JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Chronology of CH···O Hydrogen Bonding from Molecular Dynamics Studies of the Phosphoric Acid-Catalyzed Allylboration of Benzaldehyde.

CH···O hydrogen bonds involving formyl groups have been invoked as a crucial factor controlling many asymmetric transformations. We conducted quasi-classical direct molecular dynamics simulations on the phosphoric acid-catalyzed allylboration of benzaldehyde to understand the synergy between the phosphoric acid OH···O hydrogen bond and the secondary CH···O formyl hydrogen bond as the reaction occurs. In the gas phase, both the CH···O and OH···O hydrogen bonds are enhanced from reactants to transition states. In toluene, the trend of H-bond enhancement is observed with a smaller magnitude because of solvent caging. The strength of the formyl hydrogen bond in the TS, a second CH···O interaction between the P═O oxygen and ortho-hydrogen of the phenyl ring and the OH···O hydrogen bond were determined using quantum mechanical calculations (4.6, 1.0, and 14.5 kcal mol-1 , respectively).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app