Add like
Add dislike
Add to saved papers

Effects of aligned α-helix peptide dipoles on experimental electrostatic potentials.

Protein Science 2017 September
Aligned protein α-helix dipoles have been implicated in protein function and structure. The recent breakthroughs in high-resolution electron microscopy (EM) of macromolecules makes it possible to explore fundamental aspects of structural biology at the detailed molecular level. The electrostatic potential (ESP) generated by aligned protein α-helix dipole should be observable in high-resolution EM maps despite the fact that the effect may be partially screened by induced electric fields. Here, we show that aligned backbone dipoles in protein α-helices account for long-range features in the protein ESP functions. Our results are consistent with experimental EM maps and density functional theory calculations, including direct Fourier summation for proper calculation of the ESP due to the nonlocal nature of the ESP function from aligned dipoles and other partial atomic charges.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app