Add like
Add dislike
Add to saved papers

Metal-Ligand Complex-Induced Ultrafast Charge-Carrier Relaxation and Charge-Transfer Dynamics in CdX (X=S, Se, Te) Quantum Dots Sensitized with Nitrocatechol.

The present work describes the effect of interfacial complex formation on charge carrier dynamics in CdX (X=S, Se, Te) quantum dots (QDs) sensitized nitro catechol (NCAT). To compare experiments were also carried out with catechol (CAT) where no such complexation was observed. Time-resolved emission studies suggest faster charge separation in CdS(Se)/NCAT system as compared to CdS(Se)/CAT although change in Gibbs free energy for hole transfer is less in former as compared to later. This suggests that complex formation favours charge separation. Similar studies were also carried out in CdTe/NCAT system where hole transfer process was not viable thermodynamically but due to complex formation charge separation was observed. Femtosecond transient absorption studies have been carried out to monitor charge carrier dynamics in early time scale. Transient studies show faster electron cooling in QDs/NCAT system as compared to pure QDs and has been assigned to the complex formation on QDs surface. Interestingly charge recombination dynamics is much faster in QDs/NCAT system as compared to pure QDs which can be attributed to the stronger coupling between QDs and NCAT. Our results suggest a strong metal-ligand complex formation on QDs surface that controls charge carrier dynamics in QDs/molecular adsorbate system and to the best of our knowledge it has never been reported.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app