Add like
Add dislike
Add to saved papers

Monitoring of bacterial film formation and its breakdown with an angular-based surface plasmon resonance biosensor.

Analyst 2017 June 27
Bacterial biofilms are a leading cause of infection in health-care settings. Surface plasmon resonance (SPR) biosensors stand as valuable tools not only for the detection of biological entities and the characterisation of biomaterials but also as a suitable means to monitor bacterial film formation. This article reports on a proof-of-concept study for the use of an angular-based SPR biosensor for the monitoring of bacterial cell growth and biofilm formation and removal under the effect of different cleaning agents. The benefit of this custom-made SPR instrument is that it records simultaneously both the critical and resonant angles. This provides unique information on the growth of bacterial cells which is otherwise not obtainable with commonly used intensity-based SPR systems. The results clearly showed that a multilayer biofilm can be formed in 48 hours and the steps involved can be monitored in real-time with the SPR instrument through the measurement of the refractive index change and following the evolution in the shape of the SPR curve. The number, the depth and the sharpness of the reflection ripples varied as the film became thicker. Simulation results confirmed that the number of layers of bacteria affected the number of ripples at the critical angle. Real-time monitoring of the film breakdown with three cleaning agents indicated that bleach solution at 4.5% was the most effective in disrupting the biofilm from the gold sensor. Our overall findings suggest that the SPR biosensor with angular modulation presented in this article can perform real-time monitoring of biofilm formation and has the potential to be used as a platform to test the efficiency of disinfectants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app