Add like
Add dislike
Add to saved papers

The Effect of Deoxycholic Acid on Secretion and Motility in the Rat and Guinea Pig Large Intestine.

Background/Aims: Bile acid is an important luminal factor that affects gastrointestinal motility and secretion. We investigated the effect of bile acid on secretion in the proximal and distal rat colon and coordination of bowel movements in the guinea pig colon.

Methods: The short-circuit current from the mucosal strip of the proximal and distal rat colon was compared under control conditions after induction of secretion with deoxycholic acid (DCA) as well as after inhibition of secretion with indomethacin, 1,2-bis (o-aminophenoxy) ethane-N,N,N',N'-tetra-acetic acid (an intracellular calcium chelator; BAPTA), and tetrodotoxin (TTX) using an Ussing chamber. Colonic pressure patterns were also evaluated in the extracted guinea pig colon during resting, DCA stimulation, and inhibition by TTX using a newly developed pressure-sensing artificial stool.

Results: The secretory response in the distal colon was proportionate to the concentration of DCA. Also, indomethacin, BAPTA, and TTX inhibited chloride secretion in response to DCA significantly (P < 0.05). However, these changes were not detected in the proximal colon. When we evaluated motility, we found that DCA induced an increase in luminal pressure at the proximal, middle, and distal sensors of an artificial stool simultaneously during the non-peristaltic period (P < 0.05). In contrast, during peristalsis, DCA induced an increase in luminal pressure at the proximal sensor and a decrease in pressure at the middle and distal sensors of the artificial stool (P < 0.05).

Conclusions: DCA induced a clear segmental difference in electrogenic secretion. Also, DCA induced a more powerful peristaltic contraction only during the peristaltic period.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app