Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Limiting interpedicular screw displacement increases shear forces in screws: A finite element study.

BACKGROUND CONTEXT: Screw loosening has been reported for non-fusion devices. Forces on pedicle screws could be related to kinematic parameters as the interpedicular displacement (ID), which consists of the displacement between superior and inferior screw heads from full extension to full flexion.

PURPOSE: To investigate the relationship between ID and screw loosening for different designs of posterior implants using a finite element model.

METHODS: An L3-sacrum previously validated spine FE model was used. Three-rod designs were considered in L4-L5 segment: a rigid screw-rod implant, a flexible one and a specific design with a sliding rod providing limited restrain in ID. In order to simulate intermediate configurations, the friction coefficient between the sliding rods and connectors were varied. The sacrum was rigidly fixed. Rotations (flexion-extension, lateral bending and axial rotation) were applied to L3, for each modeled configuration: intact, injured, injured with different implants. Model consistency was checked with existing experimental in vitro data on intact and instrumented segments. Screw loads were computed as well as ID.

RESULTS: In flexion-extension, the ID was less than 2mm for rigid (R) and flexible (F) constructs and 5.5mm for intact spine and the sliding implant (S3). Screw's shear forces were 272N, 153N, 43N respectively for R, F and S3 constructs.

CONCLUSIONS: Implants that allow ID presented lower screws loads. A compromise between the ability of the implant to withstand compressive forces, which requires longitudinal stiffness, and its ability to allow ID could be important for future implant designs in order to prevent screw loosening.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app