Journal Article
Review
Add like
Add dislike
Add to saved papers

A comparison of the sexually dimorphic dexamethasone transcriptome in mouse cerebral cortical and hypothalamic embryonic neural stem cells.

Fetal exposure to synthetic glucocorticoids reprograms distinct neural circuits in the developing brain, often in a sex-specific manner, via mechanisms that remain poorly understood. To reveal whether such reprogramming is associated with select molecular signatures, we characterized the transcriptome of primary, embryonic mouse cerebral cortical and hypothalamic neural progenitor/stem cells derived from individual male and female embryos exposed to the synthetic glucocorticoid, dexamethasone. Gene expression profiling by RNA-Seq identified differential expression of common and unique genes based upon brain region, sex, and/or dexamethasone exposure. These gene expression datasets provide a unique resource that will inform future studies examining the molecular mechanisms responsible for region- and sex-specific reprogramming of the fetal brain brought about by in utero exposure to excess glucocorticoids.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app