Add like
Add dislike
Add to saved papers

In vitro evaluation of the cytotoxic and bactericidal mechanism of the commonly used pesticide triphenyltin hydroxide.

Chemosphere 2017 September
Triphenyltin hydroxide (TPTH) is a widely used pesticide that is highly toxic to a variety of organisms including humans and a potential contender for the environmental pollutant. In the present study, the cytotoxic mechanism of TPTH on mammalian cells was analyzed using HeLa cells and the antibacterial activity was analyzed using B. subtilis and E. coli cells. TPTH inhibited the growth of HeLa cells with a half-maximal inhibitory concentration of 0.25 μM and induced mitotic arrest. Immunofluorescence microscopy analysis showed that TPTH caused strong depolymerization of interphase microtubules and spindle abnormality with the appearance of colchicine type mitosis and condensed chromosome. TPTH exhibited high affinity for tubulin with a dissociation constant of 2.3 μM and inhibited the in vitro microtubule assembly in the presence of glutamate as well as microtubule-associated proteins. Results from the molecular docking and in vitro experiments implied that TPTH may have an overlapping binding site with colchicine on tubulin with a distance of about 11 Å between them. TPTH also binds to DNA at the A-T rich region of the minor groove. The data presented in the study revealed that the toxicity of TPTH in mammalian cells is mediated through its interactions with DNA and its strong depolymerizing activity on tubulin. However, its antibacterial activity was not through FtsZ, the prokaryotic homolog of tubulin but perhaps through its interactions with DNA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app