Add like
Add dislike
Add to saved papers

Development-related changes in the expression of the ovarian Kiss1 and Kiss1r genes and their sensitivity to human chorionic gonadotropin in prepubertal female rats.

Kisspeptin, which is encoded by the Kiss1 gene, and its receptor, the G protein-coupled receptor 54 (Kiss1r), play important roles in the regulation of reproductive functions in mammals. Several studies have shown that the Kiss1 and Kiss1r genes are expressed in the rat, primate, and human ovaries, and that the ovarian kisspeptin system plays a pivotal role in ovulation at the proestrous stage in adulthood. The purpose of this study was to evaluate development-related changes in the expression of ovarian Kiss1 and Kiss1r genes and in kisspeptin levels, and to identify the regulatory factors for these genes during the prepubertal period. The serum kisspeptin level was also measured to examine whether ovarian kisspeptin affects serum kisspeptin levels. Variations in the ovarian Kiss1 and Kiss1r mRNA levels were observed during the prepubertal period in female rats, with levels peaking around postnatal days 20 and 15, respectively. Nevertheless, the ovarian kisspeptin content per total protein level was stably maintained. Serum kisspeptin levels at postnatal days 30 and 35 were higher than those at earlier postnatal days. The pattern of the ovarian Kiss1 mRNA levels was similar to that of the serum luteinizing hormone (LH) levels, and the ovarian Kiss1 mRNA level increased after injection with human chorionic gonadotropin (HCG) on postnatal day 20, but not on postnatal days 10 and 30. These data indicate that ovarian Kiss1 and Kiss1r mRNA levels are increased on postnatal days 20 and 15, respectively, and that changes in the serum LH level and the ovarian sensitivity to LH may be involved in the alteration of ovarian Kiss1 mRNA levels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app