Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Dopamine modified hyperbranched TiO 2 arrays based ultrasensitive photoelectrochemical immunosensor for detecting neuron specific enolase.

In this work, three-dimensional (3D) hyperbranched TiO2 nanorod arrays were synthesized and used to fabricate dopamine sensitized photoelectrochemical (PEC) biosensor. To increase the lifetime of charge carriers and enhance the photocurrent responses signal, a delicate signal amplification strategy by introducing dopamine (DA) as sensitizer was developed. The dopamine sensitized TiO2 can shorten the carrier diffusion distance, improve light harvesting efficiency and charge collection efficiency, which results in performance improvement of the as-obtained PEC sensor. This proposed biosensor for determination of neuron specific enolase (NSE) demonstrated a good linear relationship range from 0.1 ng mL-1 to 1000 ng mL-1 with a detection limit of 0.05 ngmL-1 (S/N = 3). In addition, the as-prepared immunosensor exhibits excellent selectivity, stability and reproducibility, which could be extended to other label-free sensing fields. Therefore, this proposed method may also provide potential applications for the clinical examination.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app