Add like
Add dislike
Add to saved papers

Mass spectrometric detection combined with bioinformatic analysis identified possible protein markers and key pathways associated with bladder cancer.

Gene 2017 August 31
We aimed to find possible protein markers and key pathways related to bladder cancer. In total, we extracted three bladder cancer tissues and three paracancerous tissues from Jiangsu Provincial People's Hospital Urology Department, and performed mass spectrometric detection with Q Exactive. Subsequently, we screened the differentially expressed proteins in the disease group and the normal group using the LIMMA package, and performed functional enrichment analyses using DAVID. Further, we constructed protein-protein interaction (PPI) networks with Cytoscape software, and analyzed modules with ClusterONE. In total, 165 differentially expressed proteins including 19 upregulated and 146 downregulated ones were obtained. ACTA2 (Actin, Alpha 2, Smooth Muscle, Aorta), ACTN1 (Actinin, Alpha 1), and VCL (Vinculin) were significant nodes with higher degrees in the PPI network. These three nodes were also hub nodes in module 2. Besides, functional enrichment analysis suggested that ECM-receptor interaction and focal adhesion were significant pathways, and these two pathways were also enriched in three network modules. In addition, ACTN1 and VCL were enriched in the focal adhesion pathway in module 2. Thus, ACTA2, ACTN1, and VCL may play important roles in bladder cancer progression and may be protein markers for this disease. The ECM-receptor interaction pathway and the focal adhesion pathway may be involved in the progression of bladder cancer. Furthermore, ACTN1 and VCL may play roles in bladder cancer development, partly via the focal adhesion pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app