COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The effects of IGF-1 on mouse spermatogenesis using an organ culture method.

Currently available organ culture methods can induce the differentiation of spermatogonial stem cells (SSCs) to spermatids in vitro, but the percentages of haploid cells and elongated spermatids are extremely low. The goal of this study was to test strategies to increase the differentiation rate of SSCs into elongated spermatids in vitro. RNA-seq was performed from forty round spermatids isolated by laser capture microdissection from cultured mouse testicular fragments (MTFs) or 27 days post-partum testes. Gene Ontology (GO) and KEGG analysis of the transcriptome revealed that many cell cycle and apoptosis-associated genes were among the differently expressed genes. Quantitative real-time PCR confirmed that the expression of Ccnd3 decreased and the expression of Trp53, Casp8 and Cyct increased in round spermatids from cultured MTFs. As insulin-like growth factor (IGF-1) can regulate cell cycle and apoptosis of many kinds of cells, the expression of Igf-1 decreased in cultured MTFs and IGF-1 receptor expressed strongly in germ cells, IGF-1 was added to the basal medium. IGF-1 increased the percentages of round and elongated spermatids by decreasing the apoptosis of germ cells and increasing the density of germ cells in cultured MTFs. These results indicate that IGF-1 plays a critical role in spermatogenesis from SSCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app