Add like
Add dislike
Add to saved papers

Optimized Fluorescence Complementation Platform for Visualizing Salmonella Effector Proteins Reveals Distinctly Different Intracellular Niches in Different Cell Types.

The bacterial pathogen Salmonella uses sophisticated type III secretion systems (T3SS) to translocate and deliver bacterial effector proteins into host cells to establish infection. Monitoring these important virulence determinants in the context of live infections is a key step in defining the dynamic interface between the host and pathogen. Here, we provide a modular labeling platform based on fluorescence complementation with split-GFP that permits facile tagging of new Salmonella effector proteins. We demonstrate enhancement of split-GFP complementation signals by manipulating the promoter or by multimerizing the fluorescent tag and visualize three effector proteins, SseF, SseG, and SlrP, that have never before been visualized over time during infection of live cells. Using this platform, we developed a methodology for visualizing effector proteins in primary macrophage cells for the first time and reveal distinct differences in the effector-defined intracellular niche between primary macrophage and commonly used HeLa and RAW cell lines.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app