Add like
Add dislike
Add to saved papers

Rate and mode of screw misplacements after 3D-fluoroscopy navigation-assisted insertion and 3D-imaging control of 1547 pedicle screws in spinal levels T10-S1 related to vertebrae and spinal sections.

PURPOSE: In the field of spinal surgery, 3D-fluoroscopy navigation-assisted pedicle screw (PS) insertion with intra-operative 3D-image control represents a modern application of contemporary navigation technology. In literature, sectional or vertebral accuracy limitations of this image-guidance approach are not profoundly specified. This observational study explicitly differentiates accuracy rates and misplacement mode between spinal sections and single vertebrae from T10 to S1 using a navigation-assisted approach.

METHODS: From February 2011 through July 2015, all 3D-fluoroscopy navigation-assisted, 3D-image controlled PS insertions from T10 to S1 were prospectively recorded and evaluated for PS insertion depth, angulation, and entering-point modifications after intraoperative O-arm control scanning. Major complications requiring revision surgery for neurological damage/major bleedings, and procedure-related unintended violations of anatomical structures were recorded.

RESULTS: In 1547 navigation-assisted PS insertions, thoracolumbar accuracy (96.4%) was significantly higher than sacral accuracy (92.6%, p ≈ 0.007) due to special requirements to exact PS (insertion depth) in S1 (p < 0.001). Vertebrae with modification rates above average were identified (T10, L5-S1) (p < 0.001). Major complications did not occur, anatomical structures were violated in 1.2% (19/1547 PS insertions).

CONCLUSIONS: In navigation-assisted O-arm-controlled PS placements, correct PS insertion depths are less easily to achieve than correct trajectory or entering-points, which is important for bicortical PS anchorage in S1. Therefore, post-instrumentation PS control by 3D-imaging or at least intraoperative fluoroscopy is recommended for levels with special requirements to exact PS insertion depths (e.g. S1).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app