Add like
Add dislike
Add to saved papers

Cu and Cd affect distinctly the physiology of a cosmopolitan tropical freshwater phytoplankton.

Copper and Cd are natural constituents of freshwater ecosystems, both cycling influenced by microbial communities. The present research examined the impacts of environmentally relevant concentrations of Cu and Cd on the growth, viability, cell size, chlorophyll a (Chl a) content and photochemical efficiency of the tropical freshwater phytoplankton Chlorolobion braunii. Cell growth was significantly impaired by Cu and Cd, with EC50 occurring at 33.6 and 1.6µM, respectively. At sublethal levels (< EC50), cell death was already induced at 5µM Cu and 1µMCd. Average cell volume significantly increased as metal concentrations increased, as did the Chl a content per cell, although the Chl a content per unit volume decreased. Copper did not affect both the photosystem II (PSII) maximum quantum yield (ΦM) or the operational quantum yield (ΦE), while Cd significantly impacted ΦE, with EC50 occurring at 18.4µM. Different responses for Cu and Cd were obtained whether the photochemical fluorescence quenching (Qp) or non-photochemical quenching (Qn) were considered. Qp decreased after Cd addition, but was not altered after Cu addition. Qn values significantly increased after the addition of either metal. Non-photochemical quenching due to heat dissipation (NPQ) significantly increased in response to both metals, but it was more pronounced in the case of Cd. Overall, Cd was more toxic to C. braunii than Cu.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app