Add like
Add dislike
Add to saved papers

The effect of solution pH on the structural stability of magnetoferritin.

The structural stability of magnetoferritin, a synthetic analogue of ferritin, at various pH levels is assessed here. The structural and electrical properties of the complexes were determined by small-angle X-ray scattering (SAXS), dynamic light scattering (DLS) and zeta potential measurements. At pH 3-6 a reduction of electrostatic repulsion on the suspended colloids resulted in aggregation and sedimentation of magnetoferritin. At neutral to slightly alkaline conditions (pH 7-9) the magnetoferritin structure was stable for lower iron loadings. Higher solution pH 10-12 induced destabilization of the protein structure and dissociation of subunits. Increasing the loading factor in the MFer complex leads to decrease of the stability versus pH changes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app