Add like
Add dislike
Add to saved papers

Silica nanoparticles alleviate cadmium toxicity in rice cells: Mechanisms and size effects.

Although it was recently determined that silicon can alleviate cadmium (Cd) toxicity in rice, the effects of silicon properties and the molecular mechanisms are still unclear. Here, the effect of silica nanoparticles (SiNPs) on Cd toxicity in rice was examined using cells cultured in suspension in the presence or absence of SiNPs (19 nm, 48 nm and 202 nm). The results showed that the presence of SiNPs substantially enhanced the proportion of live cells to 95.4%, 78.6% and 66.2%, respectively, suggesting that the extent of alleviation of Cd toxicity decreased gradually with size of SiNPs. The morphological results showed that dramatic damage and severe structural changes in the organelle integrity of cells occurred in the absence of SiNPs, whereas the cells exposed to the SiNPs remained nearly intact even in the presence of high concentrations of Cd. Furthermore, the SiNPs accumulated on the surface of the rice cells. Using inductively coupled plasma mass spectroscopy, Cd accumulated preferentially in plant cells with cell walls. In addition, noninvasive microtest technology showed that the average Cd(2+) influx in those treated with SiNPs (19 nm, 48 nm and 202 nm) decreased by 15.7-, 11.1- and 4.6-fold, respectively. The gene expression of Cd uptake and transport (OsLCT1 and OsNramp5) was inhibited by SiNPs, but the gene expression of Cd transport into vacuole (OsHMA3) and Si uptake (OsLsi1) was enhanced by the SiNPs. These results indicate that the presence of SiNPs increased at least 1.87-fold the Si uptake capacity and inhibited the Cd uptake capacity, which together resulted in the alleviation of the toxicity of Cd in rice. This study provided a molecular-scale insight into the understanding of the SiNPs-induced alleviation of the toxicity of Cd in rice.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app