Add like
Add dislike
Add to saved papers

Harmine is an inflammatory inhibitor through the suppression of NF-κB signaling.

Harmine is a major constituent in a hallucinogenic botanical mixture ayahuasca and medical plant Peganum harmala L. The plant is used for various illnesses and exhibits anti-inflammatory activity. However, the active constituents remain unclear. Here, we screened the seven alkaloids in P. harmala for their anti-inflammatory activity using an nuclear factor-κB (NF-κB) reporter assay. We found that harmine and harmol could inhibit NF-κB transactivity. As the most abundant compound, harmine inhibited tumor necrosis factor-α (TNF-α)- and lipopolysaccharides (LPS)-induced NF-κB transactivity and nuclear translocation in mouse macrophage RAW 264.7 cells. The mRNA and protein levels of NF-κB downstream inflammatory cytokines also reduced. In an LPS-challenged mouse model, harmine markedly averted inflammatory damage of the lung, and decreased serum TNF-α, interleukin-1β (IL-1β) and IL-6 levels. Our data indicate that harmine may exert the anti-inflammatory effect by inhibition of the NF-κB signaling pathway and harmine is probably responsible for the anti-inflammatory effects of P. harmala.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app