Journal Article
Research Support, Non-U.S. Gov't
Review
Add like
Add dislike
Add to saved papers

Targeting Free Radicals in Oxidative Stress-Related Human Diseases.

Cancer and Alzheimer's disease (AD) are characterized by (i) opposing biological mechanisms, (ii) an inverse correlation between their incidences, and (iii) oxidative stress being a common denominator of both diseases. Increased formation of reactive oxygen species (ROS) in cancer cells from oncogenic signaling and/or metabolic disturbances leads to upregulation of cellular antioxidant capacity to maintain ROS levels below a toxic threshold. Combining drugs that induce high levels of ROS with compounds that suppress cellular antioxidant capacity by depleting antioxidant systems [glutathione (GSH), superoxide dismutase (SOD), and thioredoxin (TRX)] and/or targeting glucose metabolism represents a potential anticancer strategy. In AD, free metals and/or Aβ:metal complexes may cause damage to biomolecules in the brain (via Fenton reaction), including DNA. Metal chelation, based on the application of selective metal chelators or metal delivery, may induce neuroprotective signaling and represents a promising therapeutic strategy. This review examines therapeutic strategies based on the modulation of oxidative stress in cancer and AD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app