Evaluation Studies
Journal Article
Add like
Add dislike
Add to saved papers

Evaluation of pharmacokinetics and blood-brain barrier permeability of mitragynine using in vivo microdialysis technique.

A microdialysis system coupled with a sensitive ultra-fast liquid chromatography-mass spectrometry (UFLC-MS) method was developed for the pharmacokinetic analysis of mitragynine in rat blood and striatum. Mitragynine is an active alkaloid of Mitragyna speciosa and has been proposed to be used for opioid withdrawal therapy. In this study, chromatographic separation was performed in a gradient elution mode with 0.1% formic acid and acetonitrile on a Zorbax Eclipse C18 column. The mass spectrometric (MS) analysis was carried out in a positive electrospray mode and mitragynine ion (m/z 399.2) was monitored in extracted ion chromatography. A good linearity range was obtained from 10-1000ng/mL with acceptable accuracy and precision parameters. The microdialysate was collected simultaneously from the striatum and the right jugular vein using microdialysis probes. After a single intravenous administration of 10mg/kg mitragynine, mitragynine showed a two-compartmental drug elimination pattern with half-life (T1/2 ) of approximately 13h. The percent of AUCbrain /AUCplasma of mitragynine was calculated and shown to be 65.8±4.5%. The results indicated that mitragynine could be a suitable molecule to develop into an opioid replacement drug based on its ideal pharmacokinetic properties, namely, small molecular size, lipophilic in nature and with excellent blood-brain barrier (BBB) permeability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app