JOURNAL ARTICLE
RANDOMIZED CONTROLLED TRIAL
Add like
Add dislike
Add to saved papers

Dipeptidyl Peptidase 4 Inhibition Stimulates Distal Tubular Natriuresis and Increases in Circulating SDF-1α 1-67 in Patients With Type 2 Diabetes.

Diabetes Care 2017 August
OBJECTIVE: Antihyperglycemic agents, such as empagliflozin, stimulate proximal tubular natriuresis and improve cardiovascular and renal outcomes in patients with type 2 diabetes. Because dipeptidyl peptidase 4 (DPP-4) inhibitors are used in combination with sodium-glucose cotransporter 2 (SGLT2) inhibitors, we examined whether and how sitagliptin modulates fractional sodium excretion and renal and systemic hemodynamic function.

RESEARCH DESIGN AND METHODS: We studied 32 patients with type 2 diabetes in a prospective, double-blind, randomized, placebo-controlled trial. Measurements of renal tubular function and renal and systemic hemodynamics were obtained at baseline, then hourly after one dose of sitagliptin or placebo, and repeated at 1 month. Fractional excretion of sodium and lithium and renal hemodynamic function were measured during clamped euglycemia. Systemic hemodynamics were measured using noninvasive cardiac output monitoring, and plasma levels of intact versus cleaved stromal cell-derived factor (SDF)-1α were quantified using immunoaffinity and tandem mass spectrometry.

RESULTS: Sitagliptin did not change fractional lithium excretion but significantly increased total fractional sodium excretion (1.32 ± 0.5 to 1.80 ± 0.01% vs. 2.15 ± 0.6 vs. 2.02 ± 1.0%, P = 0.012) compared with placebo after 1 month of treatment. Moreover, sitagliptin robustly increased intact plasma SDF-1α1-67 and decreased truncated plasma SDF-1α3-67 . Renal hemodynamic function, systemic blood pressure, cardiac output, stroke volume, and total peripheral resistance were not adversely affected by sitagliptin.

CONCLUSIONS: DPP-4 inhibition promotes a distal tubular natriuresis in conjunction with increased levels of intact SDF-1α1-67 . Because of the distal location of the natriuretic effect, DPP-4 inhibition does not affect tubuloglomerular feedback or impair renal hemodynamic function, findings relevant to using DPP-4 inhibitors for treating type 2 diabetes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app