Add like
Add dislike
Add to saved papers

Autophagy-regulated AMPAR subunit upregulation in in vitro oxygen glucose deprivation/reoxygenation-induced hippocampal injury.

Brain Research 2017 August 2
Autophagy has been implicated to mediate experimental cerebral ischemia/reperfusion-induced neuronal death; the underlying molecular mechanisms, though, are poorly understood. In this study, we investigated the role of autophagy in regulating the expression of AMPAR subunits (GluR1, GluR2, and GluR3) in oxygen glucose deprivation/reperfusion (OGD/R)-mediated injury of hippocampal neurons. Our results showed that, OGD/R-induced hippocampal neuron injury was accompanied by accumulation of autophagosomes and autolysosomes in cytoplasm alongside a dramatic increase in expression of autophagy-related genes, LC3 and Beclin 1 and increased intracellular Ca2+ levels. Pre-treatment with autophagy inhibitor 3-methyladenine (3-MA) significantly reduced this effect. Moreover, the OGD/R-induced upregulation of mRNA and protein expressions of GluR1, GluR2, and GluR3 were also effectively reversed in cells pretreated with 3-MA. Our findings indicate that OGD/R induced the expression of GluRs by activating autophagy in in vitro cultured hippocampal neurons, which could be effectively reversed by the administration of 3-MA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app