Journal Article
Review
Add like
Add dislike
Add to saved papers

Phosphatidylinositol (4,5)-bisphosphate-mediated pathophysiological effect of HIV-1 Tat protein.

Biochimie 2017 October
Human immunodeficiency virus (HIV)-infected cells actively release the transcriptional activator (Tat) viral protein that is required for efficient HIV gene transcription. Extracellular Tat is able to enter uninfected cells. We recently reported that internalized Tat escapes endosomes to reach the cytosol and is then recruited to the plasma membrane by phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2 ). As a consequence, Tat strongly impairs different critical cellular functions in several cell types. Here we will review recent evidences showing that Tat, by affecting the interaction of key cellular effectors with PtdIns(4,5)P2 , blocks exocytosis from neuroendocrine cells, perturbs the synaptic vesicle exo-endocytosis cycle, prevents efficient phagocytosis by macrophages, and alters potassium channel activity in cardiac cells. Potential mechanistic aspects of Tat effects on these cellular processes will be discussed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app