JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Deficiency of long isoforms of Nfe2l1 sensitizes MIN6 pancreatic β cells to arsenite-induced cytotoxicity.

Increasing evidence indicates that chronic inorganic arsenic exposure is associated with type 2 diabetes (T2D), a disease of growing prevalence. Pancreatic β-cells were targeted and damaged by oxidative stress induced by arsenite. We previously showed that nuclear factor erythroid 2 like 2 (Nfe2l2)-deficient pancreatic β-cells were vulnerable to cell damage induced by oxidative stressors including arsenite, due to a muted antioxidant response. Like nuclear factor erythroid 2 like 2 (NFE2L2), NFE2L1 also belongs to the cap 'n' collar (CNC) basic-region leucine zipper (bZIP) transcription factor family, and regulates antioxidant response element (ARE) related genes. Our prior work showed NFE2L1 regulates glucose-stimulated insulin secretion (GSIS) in pancreatic β-cells and isolated islets. In the current study, we demonstrated that MIN6 cells with a specific knockdown of long isoforms of Nfe2l1 (L-Nfe2l1) by lentiviral shRNA (Nfe2l1(L)-KD) were vulnerable to arsenite-induced apoptosis and cell damage. The expression levels of antioxidant genes, such as Gclc, Gclm and Ho-1, and intracellular reactive oxygen species (ROS) levels were not different in Scramble and Nfe2l1(L)-KD cells, while the expression of arsenic metabolism related-genes, such as Gsto1, Gstm1 and Nqo1, increased in Nfe2l1(L)-KD cells with or without arsenite treatment. The up-regulation of arsenic biotransformation genes was due to activated NFE2L2 in Nfe2l1(L)-KD MIN6 cells. Furthermore, the level of intracellular monomethylarsenic (MMA) was higher in Nfe2l1(L)-KD MIN6 cells than in Scramble cells. These results showed that deficiency of L-Nfe2l1 in pancreatic β-cells increased susceptibility to acute arsenite-induced cytotoxicity by promoting arsenic biotransformation and intracellular MMA levels.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app