Add like
Add dislike
Add to saved papers

Simulating the Electronic Circular Dichroism Spectra of Photoreversible Peptide Conformations.

Electronic circular dichroism (CD) spectroscopy of peptides is one of the most important experimental characterization tools to get insights regarding their structure. Nevertheless, even though highly useful, the reliable simulations of CD spectra result in a complex task. Here, we propose a combination of quantum mechanics/molecular mechanics (QM/MM) methods with a semiempirical Hamiltonian based on the Frenkel excitons theory to efficiently describe the behavior of a model 27-amino acid α-helical peptide in water. Especially, we show how the choice of the QM region, including different possible hydrogen-bonding patterns, can substantially change the final CD spectrum shape. Moreover, we prove that our approach can correctly explain the changes observed in the peptide conformation (from α-helix to α-hairpin) when covalently linked to a protonated retinal-like molecular switch and exposing the system to UVA light, as previously observed by experiment and extensive molecular dynamics. Hence our protocol may be straightforwardly exploited to characterize light-induced conformation changes in photoactive materials and more generally protein folding processes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app