JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Tuning the Properties of Polymer Capsules for Cellular Interactions.

Particle-cell interactions are governed by, among other factors, the composition and surface properties of the particles. Herein, we report the preparation of various polymer capsules with different compositions and properties via atom transfer radical polymerization mediated continuous assembly of polymers (CAPATRP ), where the cellular interactions of these capsules, particularly fouling and specific targeting, are examined by flow cytometry and deconvolution microscopy. Acrylated eight-arm poly(ethylene glycol) (8-PEG) and poly(N-(2-hydroxypropyl)-methacrylamide) (PHPMA) as well as methacrylated hyaluronic acid (HA), poly(glutamic acid) (PGA), and poly(methacrylic acid) (PMA) are used as macro-cross-linkers to obtain a range of polymer capsules with different compositions (PEG, PHPMA, HA, PGA, and PMA). Capsules composed of low-fouling polymers, PEG and PHPMA, show negligible association with macrophage Raw 264.7, monocyte THP-1, and HeLa cells. HA capsules, although moderately low-fouling (<22%) to HeLa, BT474, Raw 264.7, and THP-1 cells, exhibit high targeting specificity to CD44-over-expressing MDA-MB-231 cells. In contrast, PGA and PMA capsules show high cellular association toward phagocytic Raw 264.7 and THP-1 cells. These findings demonstrate the capability of the CAPATRP technique in preparing polymer capsules with specific cellular interactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app