JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Inducible Bcl-2 gene RNA interference mediated by aptamer-integrated HDV ribozyme switch.

The regulation of RNA interference (RNAi) could be a powerful method for the study of temporal and dose dependent effects of gene expression. In this study, we designed the hepatitis delta virus (HDV) ribozyme with an embedded theophylline aptamer as the sensor domain and the pri-miRNA of endogenous gene Bcl-2 as the effector domain to engineer an RNAi-regulatory device in MCF-7 cells. The system allowed us to control gene expression by adding theophylline into the culture media in a dose dependent fashion. This is the pioneering application of ribozyme switches to activate RNAi for modulating endogenous genes in mammalian cells. The platform sets the stage for investigations of other endogenous genes that regulate various biological functions such as differentiation, cell division or cell death, and provides a promising interface with other universal RNAi-based decision-making circuits that operate in mammalian cells. It can be used to study more genes associated with cancer and screen for potential drug targets for gene therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app