Add like
Add dislike
Add to saved papers

Co-evolution with Staphylococcus aureus leads to lipopolysaccharide alterations in Pseudomonas aeruginosa.

ISME Journal 2017 October
Detrimental and beneficial interactions between co-colonizing bacteria may influence the course of infections. In cystic fibrosis (CF) airways, Staphylococcus aureus prevails in childhood, whereas Pseudomonas aeruginosa progressively predominates thereafter. While a range of interactions has been identified, it is unclear if these represent specific adaptations or correlated responses to other aspects of the environment. Here, we investigate how P. aeruginosa adapts to S. aureus by evolving P. aeruginosa in the presence and absence of S. aureus. P. aeruginosa populations that evolved for 150 generations were sequenced and compared to the ancestor strain. Mutations in the Wsp signaling system were identified in both treatments and likely occurred because of low oxygen availability. Despite showing increased killing activity, wsp mutants were less fit in the presence of S. aureus. In contrast, mutations in lipopolysaccharide (LPS) biosynthesis occurred exclusively in co-cultures with S. aureus and conferred a fitness gain in its presence. Moreover, they increased resistance towards beta-lactam antibiotics. Strikingly, both mutations in wsp and LPS genes are observed in clinical isolates from CF-patients. Our results suggest that P. aeruginosa LPS mutations are a direct consequence of S. aureus imposed selection in vitro.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app