Add like
Add dislike
Add to saved papers

Tenogenic Differentiation of Human Embryonic Stem Cells.

Tendon healing is complex to manage because of the limited regeneration capacity of tendon tissue; stem cell-based tissue engineering approaches may provide alternative healing strategies. We sought to determine whether human embryonic stem cells (hESC) could be induced to differentiate into tendon-like cells by the addition of exogenous bone morphogenetic protein (BMP)12 (growth differentiation factor[GDF]7) and BMP13 (GDF6). hESC (SHEF-1) were maintained with or without BMP12/13 supplementation, or supplemented with BMP12/13 and the Smad signaling cascade blocking agent, dorsomorphin. Primary rat tenocytes were included as a positive control in immunocytochemistry analysis. A tenocyte-like elongated morphology was observed in hESC after 40-days continuous supplementation with BMP12/13 and ascorbic acid (AA). These cells displayed a tenomodulin expression pattern and morphology consistent with that of the primary tenocyte control. Analysis of tendon-linked gene transcription in BMP12/13 supplemented hESC demonstrated consistent expression of COL1A2, COL3A1, DCN, TNC, THBS4, and TNMD levels. Conversely, when hESCs were cultured in the presence of BMP12/13 and dorsomorphin COL3A1, DCN, and TNC gene expression and tendon matrix formation were inhibited. Taken together, we have demonstrated that hESCs are responsive to tenogenic induction via BMP12/13 in the presence of AA. The directed in vitro generation of tenocytes from pluripotent stem cells may facilitate the development of novel repair approaches for this difficult to heal tissue.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app