Add like
Add dislike
Add to saved papers

Novel Dark Matter Constraints from Antiprotons in Light of AMS-02.

We evaluate dark matter (DM) limits from cosmic-ray antiproton observations using the recent precise AMS-02 measurements. We properly take into account cosmic-ray propagation uncertainties, fitting DM and propagation parameters at the same time and marginalizing over the latter. We find a significant indication of a DM signal for DM masses near 80 GeV, with a hadronic annihilation cross section close to the thermal value, ⟨σv⟩≈3×10^{-26}  cm^{3} s^{-1}. Intriguingly, this signal is compatible with the DM interpretation of the Galactic center gamma-ray excess. Confirmation of the signal will require a more accurate study of the systematic uncertainties, i.e., the antiproton production cross section, and the modeling of the effect of solar modulation. Interpreting the AMS-02 data in terms of upper limits on hadronic DM annihilation, we obtain strong constraints excluding a thermal annihilation cross section for DM masses below about 50 GeV and in the range between approximately 150 and 500 GeV, even for conservative propagation scenarios. Except for the range around ∼80  GeV, our limits are a factor of ∼4 stronger than the limits from gamma-ray observations of dwarf galaxies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app