Add like
Add dislike
Add to saved papers

Velocity Distribution of a Homogeneously Driven Two-Dimensional Granular Gas.

The theory of homogeneously driven granular gases of hard particles predicts that the stationary state is characterized by a velocity distribution function with overpopulated high-energy tails as compared to the exponential decay valid for molecular gases. While this fundamental theoretical result was confirmed by numerous numerical simulations, an experimental confirmation is still missing. Using self-rotating active granular particles, we find a power-law decay of the velocity distribution whose exponent agrees well with the theoretic prediction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app