JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The anaesthetized rabbit with acute atrioventricular block provides a new model for detecting drug-induced Torsade de Pointes.

BACKGROUND AND PURPOSE: Several rabbit proarrhythmia models have been developed using genetic or pharmacological methods to suppress the slow component of delayed rectifier K+ currents in the ventricle, leading to reduction of the repolarization reserve. Here we have characterized a novel rabbit in vivo proarrhythmia model with severe bradycardia caused by acute atrioventricular block (AVB).

EXPERIMENTAL APPROACH: Bradycardia was induced in isoflurane-anaesthetized rabbits by inducing AVB with catheter ablation, and the ventricle was electrically driven at 60 beats min-1 throughout the experiment except when extrasystoles appeared. We assessed the effects of two antiarrhythmics, two quinolone antibiotics and one antipsychotic drug, which were chosen as positive drugs (dofetilide, sparfloxacin and haloperidol) and negative drugs (amiodarone and moxifloxacin) for induction of Torsades de Pointes (TdP).

KEY RESULTS: In our model, TdP arrhythmias appeared with high reproducibility after i.v. dofetilide (10-100 μg·kg-1 ) in five out of six rabbits, sparfloxacin (30 mg·kg-1 ) in three out of six rabbits and haloperidol (0.3-3 mg·kg-1 ) in two out of six rabbits. The lethal arrhythmias repeatedly appeared and were accompanied with prolongation of the QT interval and early afterdepolarization-like phenomena. Neither amiodarone (0.3-10 mg·kg-1 , n = 6) nor moxifloxacin (3-30 mg·kg-1 , n = 6) induced such arrhythmias, even when QT intervals were prolonged.

CONCLUSIONS AND IMPLICATIONS: These results suggest that our model of the unremodelled and bradycardic heart of the anaesthetized rabbit is a useful test system for the detection of drug-induced TdP arrhythmias.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app