Add like
Add dislike
Add to saved papers

A mutation creating an upstream initiation codon in the SOX9 5' UTR causes acampomelic campomelic dysplasia.

BACKGROUND: Campomelic dysplasia (CD) is a semilethal developmental disorder caused by mutations in and around SOX9. CD is characterized by multiple skeletal malformations including bending (campomelia) of long bones. Surviving patients frequently have the acampomelic form of CD (ACD).

METHODS: This is a single case report on a patient with clinical and radiological features of ACD who has no mutation in the SOX9 protein-coding sequence nor a translocation with breakpoint in the SOX9 regulatory domain. We include functional studies of the novel mutant protein in vitro and in cultured cells.

RESULTS: The patient was found to have a de novo heterozygous mutation c.-185G>A in the SOX9 5'UTR. The mutation creates an upstream translation start codon, uAUG, with a much better fit of its flanking sequence to the Kozak consensus than the wild-type AUG. By in vitro transcription-translation and transient transfection into COS-7 cells, we show that the uAUG leads to translation of a short peptide from a reading frame that terminates just after the wild-type AUG start codon. This results in reduced translation of the wild-type protein, compatible with the milder phenotype of the patient.

CONCLUSION: Findings support the notion that more mildly affected, surviving CD/ACD patients carry mutant SOX9 alleles with residual expression of SOX9 wild-type protein. Although rarely described in human genetic disease and for the first time here for CD, mutations creating upstream AUG codons may be more common than generally assumed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app