Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Enhancing erythritol productivity in Yarrowia lipolytica using metabolic engineering.

Erythritol (1,2,3,4-butanetetrol) is a four-carbon sugar alcohol with sweetening properties that is used by the agrofood industry as a food additive. In this study, we demonstrated that metabolic engineering can be used to improve the production of erythritol from glycerol in the yeast Yarrowia lipolytica. The best results were obtained using a mutant that overexpressed GUT1 and TKL1, which encode a glycerol kinase and a transketolase, respectively, and in which EYK1, which encodes erythrulose kinase, was disrupted; the latter enzyme is involved in an early step of erythritol catabolism. In this strain, erythritol productivity was 75% higher than in the wild type; furthermore, the culturing time needed to achieve maximum concentration was reduced by 40%. An additional advantage is that the strain was unable to consume the erythritol it had created, further increasing the process's efficiency. The erythritol productivity values we obtained here are among the highest reported thus far.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app