Add like
Add dislike
Add to saved papers

Effect on Acetylcholinesterase and Anti-oxidant Activity of Synthetic Chalcones having a Good Predicted Pharmacokinetic Profile.

BACKGROUND: Acetylcholinesterase (AChE) is an important target in the development of drug to treat Alzheimer's disease (AD). In this work, we investigated the effect of twenty-two synthesized chalcones on AChE activity.

OBJECTIVE: This work is aimed to synthesize and evaluate the effect of chalcones on the AChE activity, as well as anti-oxidant activity and predict their pharmacokinetic profile.

METHOD: Chalcones were synthesized through a Claisen-Schmidt condensation and their inhibitory effect on the AChE was evaluated by the Elmann's colorimetric method. To determine the anti-oxidant activity the DPPH radical scavenging method was chosen.

RESULTS: We found that all chalcones inhibit this activity, with IC50 values ranging from 0.008 to 4.8 µM. We selected the most active compound 19 with an IC50 value of 0.008 µM for a kinetic study demonstrating a competitive inhibition mode. Molecular docking simulations showed a good interaction between 19 and the active site of AChE. Considering the prediction of pharmacokinetic parameters being a useful tool for selecting potential drug candidates, our study results suggest that the majority of chalcones, including the most active one, have a promising pharmacokinetic profile and blood-brain barrier permeability. The involvement of reactive oxygen species (ROS) in AD-related events has encouraged us to evaluate these chalcones as radical scavengers.

CONCLUSION: We have found that compound 19 is a potent AChE inhibitor, and based on kinetic studies, it acts as a competitive inhibitor.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app