Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Parallel gene selection and dynamic ensemble pruning based on Affinity Propagation.

Gene selection and sample classification based on gene expression data are important research areas in bioinformatics. Selecting important genes closely related to classification is a challenging task due to high dimensionality and small sample size of microarray data. Extended rough set based on neighborhood has been successfully applied to gene selection, as it can select attributes without redundancy and deal with numerical attributes directly. However, the computation of approximations in rough set is extremely time consuming. In this paper, in order to accelerate the process of gene selection, a parallel computation method is proposed to calculate approximations of intersection neighborhood rough set. Furthermore, a novel dynamic ensemble pruning approach based on Affinity Propagation clustering and dynamic pruning framework is proposed to reduce memory usage and computational cost. Experimental results on three Arabidopsis thaliana biotic and abiotic stress response datasets demonstrate that the proposed method can obtain better classification performance than ensemble method with gene pre-selection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app