Add like
Add dislike
Add to saved papers

Design and synthesis of some acridine-piperazine hybrids for the improvement of cognitive dysfunction.

A novel series of hybrid molecules (5a-5m) was designed, synthesized and evaluated as multifunctional cholinesterase (ChE) inhibitors against cognitive dysfunction. Heterocyclic moieties acridine and piperazine were conjugated with suitable linkers in a single scaffold, and the structures of the target compounds were confirmed by IR, (1) H NMR, (13) C NMR, and LC-MS analysis. The pharmacological activity of synthesized compounds was evaluated using behavioral models of amnesia viz. step-down passive avoidance and elevated plus maze at a dose 0.5 mg/kg as compared to standard rivastigmine. In vitro acetylcholinesterase (AChE) inhibition studies using brain homogenate of mice as the enzyme source revealed that most of the compounds exhibited a significant ability to inhibit the enzyme cholinesterase with compound 5c being the most potent (IC50 0.33 μm). Biochemical estimation of oxidative stress markers viz. plasma nitrite, thiobarbituric acid reactive substances, catalase, superoxide dismutase, and glutathione has been carried out using the respective assays to see the effect of the synthesized compounds on the scopolamine-induced oxidative damage. The molecular docking studies indicated the binding mode of the compounds to the catalytic site, peripheral site, and mid-gorge of AChE simultaneously. The calculated absorption, distribution, metabolism and excretion properties ensured the drug-likeness of the target compounds. The synthesized compounds were found to be potential cognitive enhancers, which were able to interfere with the scopolamine-induced oxidative stress also.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app