Add like
Add dislike
Add to saved papers

Detection of Nitric Oxide from Living Cells Using Polymeric Zinc Organic Framework-Derived Zinc Oxide Composite with Conducting Polymer.

Small 2017 May 23
Sensitive and selective detection of nitric oxide (NO) in the human body is crucial since it has the vital roles in the physiological and pathological processes. This study reports a new type of electrochemical NO biosensor based on zinc-dithiooxamide framework derived porous ZnO nanoparticles and polyterthiophene-rGO composite. By taking advantage of the synergetic effect between ZnO and poly(TTBA-rGO) (TTBA = 3'-(p-benzoic acid)-2,2':5',2″-terthiophene, rGO = reduced graphene oxide) nanocomposite layer, the poly(TTBA-rGO)/ZnO sensor probe displays excellent electrocatalytic activity and explores to detect NO released from normal and cancer cell lines. The ZnO is immobilized on a composite layer of poly(TTBA-rGO). The highly porous ZnO offers a high electrolyte accessible surface area and high ion-electron transport rates that efficiently catalyze the NO reduction reaction. Amperometry with the modified electrode displays highly sensitive response and wide dynamic range of 0.019-76 × 10(-6) m with the detection limit of 7.7 ± 0.43 × 10(-9) m. The sensor probe is demonstrated to detect NO released from living cells by drug stimulation. The proposed sensor provides a powerful platform for the low detection limit that is feasible for real-time analysis of NO in a biological system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app