JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Exacerbation of Aging-Associated and Instability-Induced Murine Osteoarthritis With Deletion of D Prostanoid Receptor 1, a Prostaglandin D 2 Receptor.

OBJECTIVE: D prostanoid receptor 1 (DP1), a receptor for prostaglandin D2 , plays important roles in inflammation and cartilage metabolism. However, its role in the pathogenesis of osteoarthritis (OA) remains unknown. This study was undertaken to explore the roles of DP1 in the development of OA in murine models and to evaluate the efficacy of a DP1 selective agonist in the treatment of OA.

METHODS: The development of aging-associated OA and destabilization of the medial meniscus (DMM)-induced OA was compared between DP1-deficient (DP1-/- ) and wild-type (WT) mice. The progression of OA was assessed by histology, immunohistochemistry, and micro-computed tomography. Cartilage explants from DP1-/- and WT mice were treated with interleukin-1α (IL-1α) ex vivo, to evaluate proteoglycan degradation. The effect of intraperitoneal administration of the DP1 selective agonist BW245C on OA progression was evaluated in WT mice.

RESULTS: Compared to WT mice, DP1-/- mice had exacerbated cartilage degradation in both models of OA, and this was associated with increased expression of matrix metalloproteinase 13 and ADAMTS-5. In addition, DP1-/- mice demonstrated enhanced subchondral bone changes. Cartilage explants from DP1-/- mice showed enhanced proteoglycan degradation following treatment with IL-1α. Intraperitoneal injection of BW245C attenuated the severity of DMM-induced cartilage degradation and bony changes in WT mice.

CONCLUSION: These findings indicate a critical role for DP1 signaling in OA pathogenesis. Modulation of the functions of DP1 may constitute a potential therapeutic target for the development of novel OA treatments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app