Add like
Add dislike
Add to saved papers

Simultaneous Imaging of Endogenous Survivin mRNA and On-Demand Drug Release in Live Cells by Using a Mesoporous Silica Nanoquencher.

Small 2017 May 25
The design of multifunctional drug delivery systems capable of simultaneous target detection, imaging, and therapeutics in live mammalian cells is critical for biomedical research. In this study, by using mesoporous silica nanoparticles (MSNs) chemically modified with a small-molecule dark quencher, followed by sequential drug encapsulation, MSN capping with a dye-labeled antisense oligonucleotide, and bioorthogonal surface modification with cell-penetrating poly(disulfide)s, the authors have successfully developed the first mesoporous silica nanoquencher (qMSN), characterized by high drug-loading and endocytosis-independent cell uptake, which is able to quantitatively image endogenous survivin mRNA and release the loaded drug in a manner that depends on the survivin expression level in tumor cells. The authors further show that this novel drug delivery system may be used to minimize potential cytotoxicity encountered by many existing small-molecule drugs in cancer therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app