Add like
Add dislike
Add to saved papers

Modified Tetrathiafulvalene as an Organic Conductor for Improving Performances of Li-O2 Batteries.

Angewandte Chemie 2017 May 24
Large over-potentials owing to the sluggish kinetics of battery reactions have always been the drawbacks of Li-O2 batteries, which lead to short cycle life. Although redox mediators have been intensively investigated to overcome this issue, side-reactions are generally induced by the solvated nature of redox mediators. Herein, we report an alternative method to achieve more efficient utilization of tetrathiafulvalene (TTF) in Li-O2 batteries. By coordinating TTF(+) with LiCl during charging, an organic conductor TTF(+) Clx(-) precipitate covers Li2 O2 to provide an additional electron-transfer pathway on the surface, which can significantly reduce the charge over-potential, improve the energy efficiency of Li-O2 batteries, and eliminate side-reactions between the lithium metal anode and TTF(+) . When a porous graphene electrode is used, the Li-O2 battery combined with TTF and LiCl shows an outstanding performance and prolonged cycle life.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app