Add like
Add dislike
Add to saved papers

AMPK β1 reduces tumor progression and improves survival in p53 null mice.

Molecular Oncology 2017 September
The AMP-activated protein kinase (AMPK) is a heterotrimeric protein complex that is an important sensor of cellular energy status. Reduced expression of the AMPK β1 isoform has been linked to reduced survival in different cancers, but whether this accelerates tumor progression and the potential mechanism mediating these effects are not known. Furthermore, it is unknown whether AMPK β1 is implicated in tumorigenesis, and if so, what tissues may be most sensitive. In the current study, we find that in the absence of the tumor suppressor p53, germline genetic deletion of AMPK β1 accelerates the appearance of a T-cell lymphoma that reduces lifespan compared to p53 deficiency alone. This increased tumorigenesis is linked to increases in interleukin-1β (IL1β), reductions in acetyl-CoA carboxylase (ACC) phosphorylation, and elevated lipogenesis. Collectively, these data indicate that reductions in the AMPK β1 subunit accelerate the development of T-cell lymphoma, suggesting that therapies targeting this AMPK subunit or inhibiting lipogenesis may be effective for limiting the proliferation of p53-mutant tumors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app