Add like
Add dislike
Add to saved papers

Multiple Hydrogen Bonding Enables the Self-Healing of Sensors for Human-Machine Interactions.

Angewandte Chemie 2017 May 24
Despite its widespread use in signal collection, flexible sensors have been rarely used in human-machine interactions owing to its indistinguishable signal, poor reliability, and poor stability when inflicted with unavoidable scratches and/or mechanical cuts. A highly sensitive and self-healing sensor enabled by multiple hydrogen bonding network and nanostructured conductive network is demonstrated. The nanostructured supramolecular sensor displays extremely fast (ca. 15 s) and repeatable self-healing ability with high healing efficiency (93 % after the third healing process). It can precisely detect tiny human motions, demonstrating highly distinguishable and reliable signals even after cutting-healing and bending over 20 000 cycles. Furthermore, a human-machine interaction system is integrated to develop a facial expression control system and an electronic larynx, aiming to control the robot to assist the patient's daily life and help the mute to realize real-time speaking.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app