Add like
Add dislike
Add to saved papers

Viable bacteria persist on antibiotic spacers following two-stage revision for periprosthetic joint infection.

Treatment in periprosthetic joint infection (PJI) remains challenging. The failure rate of two-stage revision and irrigation and debridement with component retention in PJI suggests that biofilm cells have a high tolerance to antibiotic chemotherapy. Previous work has demonstrated that biofilm cells have high antibiotic tolerance in vitro, but there is little clinical evidence to support these observations. The aim of this study was to determine if retrieved antibiotic spacers from two-stage revision total knee arthroplasty for PJI have evidence of remaining viable bacteria. Antibiotic poly (methyl methacrylate) (PMMA) spacers from two-stage revision total knee arthroplasty for PJI were prospectively collected and analyzed for bacterial 16s rRNA using polymerase chain reaction (PCR), reverse transcription (RT)-PCR, quantitative RT-PCR (qRT-PCR), and single genome analysis (SGA). PCR and RT-PCR identified bacterial species on 53.8% (7/13) of these samples. When initial culture negative cases are excluded, 68% (6/9) samples were identified with bacterial species. A more rigorous qRT-PCR analysis showed a strong positive signal for bacterial contamination in 30.7% (4/13) of cases. These patients did not show any clinical evidence of PJI recurrence after 15 months of follow-up. Because the half-life of bacterial rRNA is approximately a few days, the identification of bacteria rRNA on antibiotic PMMA spacers suggests that viable bacteria were present after conclusion of antibiotic therapy. This study provides evidence for the high tolerance of biofilm cells to antibiotics in vivo and the important role of bacterial persisters in PJI. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:452-458, 2018.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app