JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Regulatory effect of microRNA-34a on osteogenesis and angiogenesis in glucocorticoid-induced osteonecrosis of the femoral head.

Glucocorticoid-induced osteonecrosis of the femoral head (GIOFH) is a common and devastating orthopedic disease, and its underlying mechanism remains unclear. The aim of this study was to determine the role of microRNA-34a (mir-34a) in GIOFH. C57 mouse mesenchymal stem cells (mMSCs) and human umbilical vein endothelial cells (HUVECs) were cultured with dexamethasone (Dex). A total of 48 adult rats were treated with glucocorticoids, and after the onset of GIOFH, each femoral head was removed. Mir-34a mimics, an inhibitor and over-expressing lentivirus were used in vitro and in vivo, respectively. Real-time PCR, immunohistochemistry, ELISA, cell proliferation assays, osteoblastic differentiation, and endothelial activity assays were employed to evaluate the effect of mir-34a on mMSCs, osteoblasts, and vascular endothelial cells in glucocorticoid-treated mice. We found that Dex inhibited mMSC proliferation and osteoblastic differentiation, as well as the viability and activity of endothelial cells. Dex also caused osteonecrosis and decreased new vessel formation in vivo. Mir-34a alleviated the inhibitory effects of Dex on mMSCs and osteoblasts, while facilitating its inhibitory effects on endothelial cells. Mir-34a is an important regulator in osteogenesis and angiogenesis, and it might be useful as a therapeutic target for GIOFH. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:417-424, 2018.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app