Add like
Add dislike
Add to saved papers

Prediction of Bond Vector Autocorrelation Functions from Larmor Frequency-Selective Order Parameter Analysis of NMR Relaxation Data.

Protein molecular dynamics interpretation of the standard R1 , R2 , and heteronuclear NOE relaxation measurements has typically been limited to a single S2 order parameter which is often insufficient to characterize the rich content of these NMR experiments. In the absence of exchange linebroadening, an optimized reduced spectral density analysis of these measurements can yield spectral density values at three distinct frequencies. Surprisingly, these three discrete spectral density values have proven to be sufficient for a Larmor frequency-selective order parameter analysis of the 223 methine and methylene H-C bonds of the B3 domain of Protein G (GB3) to accurately back-calculate the entire curve of the corresponding bond vector autocorrelation functions upon which the NMR relaxation behavior depends. The 13 C relaxation values calculated from 2 μs of CHARMM36 simulation trajectories yielded the corresponding autocorrelation functions to an average rmsd of 0.44% with only three bond vectors having rmsd errors slightly greater than 1.0%. Similar quality predictions were obtained using the CHARMM22/CMAP, AMBER ff99SB, and AMBER ff99SB-ILDN force fields. Analogous predictions for the backbone 15 N relaxation values were 3-fold more accurate. Excluding seven residues for which either experimental data is lacking or previous MD studies have indicated markedly divergent dynamics predictions, the CHARMM36-derived and experimentally derived 15 N relaxation values for the remaining 48 amides of GB3 agree to an average of 0.016, 0.010, and 0.020 for the fast limit (Sf 2 ) and Larmor frequency-selective (SH 2 and SN 2 ) order parameters, respectively. In contrast, for a substantial fraction of side chain positions, the statistical uncertainties obtained in the relaxation value predictions from each force field were appreciably less than the much larger differences predicted among these force fields, indicating a significant opportunity for experimental NMR relaxation measurements to provide structurally interpretable guidance for further optimizing the prediction of protein dynamics.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app