Add like
Add dislike
Add to saved papers

A fast and exhaustive method for heterogeneity and epistasis analysis based on multi-objective optimization.

Bioinformatics 2017 September 16
Motivation: The existing epistasis analysis approaches have been criticized mainly for their: (i) ignoring heterogeneity during epistasis analysis; (ii) high computational costs; and (iii) volatility of performances and results. Therefore, they will not perform well in general, leading to lack of reproducibility and low power in complex disease association studies. In this work, a fast scheme is proposed to accelerate exhaustive searching based on multi-objective optimization named ESMO for concurrently analyzing heterogeneity and epistasis phenomena. In ESMO, mutual entropy and Bayesian network approaches are combined for evaluating epistatic SNP combinations. In order to be compatible with heterogeneity of complex diseases, we designed an adaptive framework based on non-dominant sort and top k selection algorithm with improved time complexity O(k*M*N) . Moreover, ESMO is accelerated by strategies such as trading space for time, calculation sharing and parallel computing. Finally, ESMO is nonparametric and model-free.

Results: We compared ESMO with other recent or classic methods using different evaluating measures. The experimental results show that our method not only can quickly handle epistasis, but also can effectively detect heterogeneity of complex population structures.

Availability and implementation: https://github.com/XiongLi2016/ESMO/tree/master/ESMO-common-master .

Contact: [email protected].

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app