Add like
Add dislike
Add to saved papers

MGT-SM: A Method for Constructing Cellular Signal Transduction Networks.

A cellular signal transduction network is an important means to describe biological responses to environmental stimuli and exchange of biological signals. Constructing the cellular signal transduction network provides an important basis for the study of the biological activities, the mechanism of the diseases, drug targets and so on. The statistical approaches to network inference are popular in literature. Granger test has been used as an effective method for causality inference. Compared with bivariate granger tests, multivariate granger tests reduce the indirect causality and were used widely for the construction of cellular signal transduction networks. A multivariate Granger test requires that the number of time points in the time-series data is more than the number of nodes involved in the network. However, there are many real datasets with a few time points which are much less than the number of nodes in the network. In this study, we propose a new multivariate Granger test-based framework to construct cellular signal transduction network, called MGT-SM. Our MGT-SM uses SVD to compute the coefficient matrix from gene expression data and adopts Monte Carlo simulation to estimate the significance of directed edges in the constructed networks. We apply the proposed MGT-SM to Yeast Synthetic Network and MDA-MB-468, and evaluate its performance in terms of the recall and the AUC. The results show that MGT-SM achieves better results, compared with other popular methods (CGC2SPR, PGC and DBN).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app