Add like
Add dislike
Add to saved papers

Streptococcus mutans adherence and biofilm formation on experimental composites containing dicalcium phosphate dihydrate nanoparticles.

This study aimed at evaluating bacterial adhesion and biofilm formation on resin-based composites (RBC) including dicalcium phosphate dihydrate nanoparticles (nDCPD).

METHODS: Specimens were prepared from experimental RBCs with BisGMA/TEGDMA resin matrix including 20 vol% of either nDCPD (nDCPD-RBC), TEGDMA-functionalized nDPCD (F-nDCPD-RBC) or silanized silica (SiO2 -RBC). Neat resin blend (control-Resin), conventional nanohybrid RBC (control-RBC) and human enamel were used for reference. Characterization of the specimens included surface roughness (SR), surface free energy (SFE), chemical surface composition (EDS, XPS), and buffering ability of a pH = 4.00 solution. Streptococcus mutans adherence was assessed after 2 h; biofilm formation was simulated for 48 h using a bioreactor. Adherent, viable biomass was determined using tetrazolium salt assay (MTT).

RESULTS: nDCPD-RBC yielded highest roughness and showed higher polar and lower disperse component to total SFE. EDS and XPS indicated higher amounts of calcium and phosphate on the surface of nDCPD-RBC than on F-nDCPD-RBC. nDCPD buffered the acidic solution to 5.74, while functionalization almost prevented buffering (pH = 4.26). F-nDCPD-RBC reduced adherence and biofilm formation in comparison to nDCPD-RBC. Regardless of functionalization, biofilm formation on nDCPD-containing RBCs was not significantly different from SiO2 -RBC. Control-Resin, control-RBC, and enamel surfaces showed similar adherence values as F-nDCPD-RBC, but lower biofilm formation compared to both nDCPD-containing RBCs. In conclusion, the incorporation of nDCPD did not minimize S. mutans adherence and biofilm formation as a function of the materials´ surface properties. However, results observed for the buffering capacity indicated that optimized formulations of biomimetic RBCs may be useful for modulating their interaction with microorganisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app