JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Strontium-loaded titania nanotube arrays repress osteoclast differentiation through multiple signalling pathways: In vitro and in vivo studies.

Scientific Reports 2017 May 25
The loosening of implants is an important clinical issue, particularly for patients with osteoporosis. In these patients, an implant should preferably both promote osteoblast differentiation and repress osteoclastic resorption. In the present study, we fabricated coatings containing TiO2 nanotubes (NTs) incorporated with strontium (Sr) on titanium (Ti) surfaces through hydrothermal treatment. The amount of loaded Sr was controlled by hydrothermally treating the samples in a Sr(OH)2 solution for 1 and 3 h (samples NT-Sr1h and NT-Sr3h, respectively) and found that both types of NT-Sr samples inhibited osteoclast differentiation by reducing the expression of osteoclast marker genes. Additionally, this inhibitory effect was mainly attributed to suppression of RANKL-induced activation of nuclear factor-κB (NF-κB). Moreover, NT-Sr also inhibited the Akt and nuclear factor of activated T-cell cytoplasmic 1 (NFATc1) signalling pathways. Interestingly, we also found that NT-Sr promoted RANKL-induced extracellular signal-regulated kinase (ERK) phosphorylation. Using ovariectomised rats as a model, we observed that NT-Sr prevented bone loss in vivo. In conclusion, our findings demonstrate that NT-Sr might effectively inhibit osteoclast differentiation by repressing the NF-κB and Akt/NFATc1 pathways and by negatively regulating the ERK pathway in vitro and in vivo.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app